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We study the spin-wave excitations near the zigzag edge of graphene. It is rather interesting that we obtain
a single branch of relativistic ferromagnetic magnon due to the presence of the open boundary. Note that
magnons in antiferromagnets appear in pairs, while the single branch magnon in ferromagnets does not have
relativistic dispersion. Thus, the magnon near the zigzag edge of graphene is a hybrid of both, signaling its
intrinsic property as a boundary excitation that must be embedded in a higher dimensional bulk system.
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Graphene is the two-dimensional single-layer graphite
composed of carbon atoms in a honeycomb lattice. Recently,
this material was successfully fabricated in laboratories1–3

and stimulates intense investigations on both experimental
and theoretical sides. Its surprising band structure and high
mobility seem promising for potential applications in many
aspects.4 For instance, there are proposals5,6 that graphene
nanoribbons can be the building block for future quantum
computation. Since graphene is a low dimensional system,
we expect that the electron-electron interaction should play
some role. In a recent paper, Son et al.7 spotted local mag-
netic moments near the zigzag edges of a graphene nanorib-
bon due to the Coulomb interaction. In fact, correlation-
induced magnetic moment in graphene has been speculated
for quite a while,8–12 but its low-energy excitations remain
poorly understood at this point.

The magnetism shows that electronic correlations play a
significant role at the edges of graphene. In condensed-
matter systems, the physical properties at the edge are often
tied up with related bulk properties. For instance, the An-
dreev bound state13 near the edge of a superconductor is
related to the edge topology and also to the pairing symmetry
in the bulk. The edge states14 of a quantum Hall liquid are
described by the chiral Luttinger liquid that cannot be sepa-
rated from the bulk due to gauge invariance. Therefore, we
are inspired to investigate the low-energy spin excitations
near the edge of a single-layer graphene here. For simplicity,
we concentrate on a semi-infinite honeycomb lattice with a
zigzag edge as shown in Fig. 1. Since the band structure of
graphene is well approximated by the nearest-neighbor hop-
ping t, the tight-binding model is sufficient. Furthermore, if
we assume that the electron-electron interaction can be cap-
tured by an effective on-site interaction U, it is natural to
model the semi-infinite graphene by the Hubbard model at
half filling �n�=1.

Unfortunately, it is known that the two-dimensional Hub-
bard model cannot be solved exactly or reliably at the current
stage. Thus, approximations are inevitable. Since we are in-
terested in the spin physics, we propose to concentrate on the
effective Heisenberg exchange coupling in the system,

H = J �
�l,l��

S�l� · S�l�� , �1�

where l labels all lattice sites and �l , l�� means nearest-
neighbor pairs. The coupling constant is J=4t2 /U�0 in the

strong-interaction limit but is viewed as an independent pa-
rameter here. The honeycomb lattice of graphene can be
separated into sublattices A and B. The outmost edge sites
belong to the sublattice A in our convention as shown in Fig.
1. Starting from a Néel ordering state, it is convenient to
rotate the spin on sublattice B by Sx→Sx, Sy→−Sy, and Sz
→−Sz so that the semiclassical ground state becomes uni-
formly ferromagnetic. Following the standard procedures,
we can represent the spin on the lattice sites by the Holstein-
Primakov boson

SL
+�r� = �2S − bL

†�r�bL�r�bL�r� ,

SL
−�r� = bL

†�r��2S − bL
†�r�bL�r� ,

SL
z �r� = S − bL

†�r�bL�r� , �2�

where bL�r� ,bL
†�r� are annihilation or creation operators for

bosons. To make the sublattice dependence explicit, we have
separated the lattice positions into sublattice index L=A ,B
and r for the triangular lattice. Expanding the Heisenberg
interaction to the quadratic order in the bosonic operator, one
can obtain the familiar Hamiltonian for spin-wave excita-
tions,

FIG. 1. �Color online� Lattice structure for the semi-infinite
graphene with zigzag edge. The Néel state is shown by the alterna-
tive spins on different sublattices. For convention, we choose the
Néel state with positive Sz at the outmost edge sites
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H = JS�
r,�

�bA
†�r�bA�r� + bB

†�r + ��bB�r + ��

+ bA
†�r�bB

†�r + �� + bB�r + ��bA�r�� . �3�

The summation over � includes all three nearest neighbors
�i=a��1 /2,1 /2�3� ,a�0,−1 /�3� as shown in Fig. 1. The
presence of open boundary ruins the translational invariance
in the y direction and the above Hamiltonian cannot be di-
agonalized by the usual Fourier transformation.

However, since the translational invariance in the x direc-
tion is still valid, we can perform the partial Fourier trans-
formation

bL�x,y� =
1

�Nx

�
kx

eikyy�L�kx,y� �4�

to simplify the Hamiltonian. After some algebra, the spin-
wave Hamiltonian can be cast into the form,

H = JS�
kx

�†	h11 h12

h21 h22

� , �5�

where we introduce the two-component spinor �†

= ��A
†�kx ,y� ,�B�−kx ,y��. The matrix elements in the reduced

2�2 matrix are semi-infinite matrices: h11=2+D†D, h22=3,
and h21=h12

† =J1+J2D, where J1=2 cos
kxa
2 comes from the

tilted bonds and J2=1 from the vertical bonds. For aniso-
tropic interaction, J2 would derivate from one. The semi-
infinite displacement matrix D is

D = �
0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

0 0 0 0 . . .

. . . . . . . . . . . . . . .
� .

Now the problem in conversion is in solving the eigen-
states for a one-dimensional semi-infinite system. For nota-
tion clarity, we suppress the kx momentum dependence in the
following. Writing down the matrix elements of the Hamil-
tonian explicitly, it leads to the following coupled Harper
equations:

3�A�n� + J1�B�n� + J2�B�n − 1� = ��A�n� ,

− 3�B�n� − J1�A�n� − J2�A�n + 1� = ��B�n� , �6�

where n=1,2 ,3 , . . . denote the lattice coordinates in the y
direction. However, one needs to pay special attention to the
boundary. For the zigzag edge, there is one missing bond
from the outmost A sites to the opposite sublattice. The semi-
infinite nature of the Hamiltonian gives rise to the constraint

�A�1� + J2�B�0� = 0. �7�

Now we are ready to find out the eigenstates by the gen-
eralized Bloch theorem.15 Note that the eigenvalue of a uni-
tary displacement operator can be written as z=eik, where k
is the momentum. However, the presence of the open bound-
ary changes to this nice connection to the momentum. It is
easy to check that the displacement operator satisfies DD†

=1 but not in the inverse order D†D�1. Thus, it is no longer
unitary. Thus, the eigenstate should be written in the more
general form

� = 	�A�n�
�B�n� 
 = 	cA

cB

zn. �8�

Upon substitution into the coupled Harper equations, the ei-
genvalue z of the displacement operator satisfies the simple
algebraic constraint,

J1J2
z +
1

z
� + �J1

2 + J2
2 + �2 − 9� = 0. �9�

Usually, for given momentum k, we look for energy � of the
system. Here it is more convenient to look for the complex z
for a given energy �. It is obvious that the solutions z ,1 /z
appear in pairs. Thus, the solutions can be classified into two
types: �1� plane-wave solutions with z=e�ik and �2� evanes-
cent modes with real z=	 ,1 /	. Since we require the wave
function to be finite at infinity, only one of the evanescent
solutions survives while, not surprisingly, both plane-wave
solutions are allowed.

The plane-wave solutions correspond to the bulk mag-
nons. The presence of the open boundary does cause a rather
complicated mixing between counterpropagating modes �ky.
However, the energy spectrum remains the same as shown in
Fig. 2. Therefore, we would only concentrate on the more
interesting evanescent modes where z is real. Solving the
coupled Harper equations together with the boundary condi-
tion, there exists only one solution �=�4−J1

2. Therefore, the
dispersion for the single-branch edge magnon is

Ee�kx� = 2JS�sin�kxa/2�� , �10�

which becomes linear �relativistic� in the small momentum
regime. Note that, as shown in Fig. 2, the velocity of the
edge magnon is slightly smaller than that for the bulk mag-
non and thus is protected by a gap. In fact, this protection

�Π � Π
2

Π
2

Π
kx

1

2

3
E�kx�

FIG. 2. �Color online� Dispersions of the bulk and the edge
magnons in a semi-infinite graphene. For convenience, we have set
the energy scale and the lattice constant to unity, JS=1 and a=1.
The shaded area represents the bulk magnons with double degen-
eracy 
Sz= �1. The red line below the shaded area denotes the
single-branch edge magnons with 
Sz=−1. Note that the edge mag-
non carries the quantum number 
Sz=−1 because we choose the
Néel state with positive Sz at the outmost edge sites as shown in
Fig. 1.
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arises from the sharp distinction between �z�=1 and �z��1
solutions. Furthermore, the wave function of the edge mag-
non is

� = 	1/z
− 1


zn, with z =
1 − �sin�kxa��
cos�kxa/2�

. �11�

Note that 0�z�1 as required for the evanescent modes ex-
cept at kx=0 where the edge magnon merges into the bulk
with z=1.

The spin-density profile of the edge magnon can be ob-
tained by subtracting the background form the ground state,

Sz�r���1�Sz�r��1�− �G�Sz�r��G�, where �1� is one magnon
state and �G� is the ground state. Since the spin density is
uniform in the x direction, a factor 1 /Nx appears, where Nx is
the total transverse length. The spin density can be expressed
in terms of the normalized wave functions,


Sz�r� = �−
1

Nx
��A�n��2, r � A ,

+
1

Nx
��B�n��2, r � B .� �12�

Summing over all lattice sites, it is easy to check that the
edge magnon we found carries the total spin 
Sz

=�r
Sz�r�=−1, as for those found in conventional ferromag-
nets. The spin-density profiles of the edge magnon with two
different momenta kx=0.1 and kx=0.5 are shown in Fig. 3.
For momentum fairly close to kx=0, the spin density extends
into the bulk with long decay length. However, for kx=0.5,
though not very far away from the origin, the spin profile is
already quite localized to the zigzag edge.

So, what is the significance of the above simple calcula-
tions? For an ordinary ferromagnet, there is one branch of

nonrelativistic magnon. On the other hand, the antiferromag-
netic ground state supports two branches of relativistic mag-
nons. Here, near the zigzag edge of graphene, we find a
hybrid between the two cases—a single branch of the rela-
tivistic ferromagnetic magnon. This implies that the spin-
wave excitations near the edge of the graphene cannot be
described as the ordinary one-dimensional ferromagnet and
shall be viewed as an intrinsic boundary field theory. The
missing branch can be understood by the following symme-
try argument. Although an antiferromagnetic order breaks
both time-reversal and sublattice exchange symmetries sepa-
rately, the ground state remains invariant under both trans-
formations simultaneously. Thus, starting from the 
Sz=−1
branch, one can reverse the spin orientations by time-reversal
transformation followed by sublattice exchange to construct
the other 
Sz=1 branch. This explains why antiferromag-
netic magnons on bipartite lattices always appear in pairs
with opposite spins. However, the sublattice symmetry is
broken in the presence of the zigzag edge, this makes the
single-branch magnon possible. In fact, we check with the
armchair edge which does not destroy the sublattice symme-
try and found no evidence for the edge magnon discussed
here.

Finally, we address the validity of the approximations in
the linearized spin-wave theory. First of all, the charge exci-
tations are all left out. Since there is no charge gap in
graphene, it is expected that the neutral particle-hole excita-
tions with 
Sz=−1 will mix up with the edge magnon. How-
ever, since the Fermi surface shrinks to two Dirac points, the
phase space is largely reduced. Furthermore, since the Fermi
velocity vF is expected to be faster than the magnon velocity
vm, the hybridization is further suppressed by a finite gap

��vF−vm�kx for any finite momentum. This is similar to
the protection between bulk and edge magnons we discussed
previously. Another approximation is the existence of the
Néel order. This is the most serious approximation since it is
likely that the antiferromagnetic order may not exist at all in
graphene. Though the quadratic fluctuations from the mag-
nons do not destroy the Néel order and the spin-wave theory
remains self-consistent, it remains an open question whether
our findings here are true beyond spin-wave theory. Given
the novelty of the edge magnetism in graphene, alternative
theoretical investigations are in order. Moreover, as always,
more experimental data will help to clear up our understand-
ing of spin-wave excitations living on the edge.
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FIG. 3. �Color online� Spin density profile for �a� kx=0.1 and �b�
kx=0.5 edge magnons. For clarity, the magnitudes on the edge are
held constant. The magnitudes of the spin density �after subtracting
the background from the ground state� are represented by the radius
and also the color gradients.
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